New Trends on the Synthesis of Inorganic Nanoparticles Using Microemulsions as Confined Reaction Media
نویسندگان
چکیده
The development of nanotechnology depends strongly on the advances in nanoparticle preparation. Nowadays, there are a number of technologies available for nanoparticle synthesis, from the gas phase techniques such as laser evaporation (Gaertner & Lydtin, 1994), sputtering, laser pyrolisis, flame atomization and flame spray pyrolisis (Kruis et al. 1998), etc, to the liquid phase techniques such as coprecipitation from homogeneous solutions and sol-gel reactions (Qiao et al. 2011), solvothermal processes (Gautam et al. 2002), sonochemical and cavitation processing (Suslick et al. 1996), and surfactant and polymer-templated synthesis (Holmberg, 2004). Amongst the surfactant-based approaches, the microemulsion reaction method is one of the most used techniques for the preparation of very small and nearly monodispersed nanoparticles. This method offers a series of advantages with respect to other methods, namely, the use of simple equipment, the possibility to prepare a great variety of materials with a high degree of particle size and composition control, the formation of nanoparticles with often crystalline structure and high specific surface area, and the use of soft conditions of synthesis, near ambient temperature and pressure. The traditional method is based on water-in-oil microemulsions (W/O), and it has been used for the preparation of metallic and other inorganic nanoparticles since the beginning of the 1980’s (Boutonnet et al., 1982). The droplets of W/O microemulsions are conceived as tiny compartments or “nanoreactors”. The main strategy for the synthesis of nanoparticles in W/O microemulsions consists in mixing two microemulsions, one containing the metallic precursor and another one the precipitating agent. Upon mixing, both reactants will contact each other due to droplets collisions and coalescence, and they will react to form precipitates of nanometric size (Figure 1). This precipitate will be confined to the interior of microemulsion droplets. Numerous investigations have been published about the use of W/O microemulsions for the preparation of a variety of nanomaterials,
منابع مشابه
Synthesis of hydroxyapatite nanoparticles trough polyelectrolyte-modified microemulsions
The paper is focused on the formation of hydroxyapatite nanoparticles (HAp) in polyelectrolyte-modified microemulsions, in a microemulsion template phase consisting of cyclohexane, water, cationic surfactant and cosurfactant, in the presence of Na-polyacrylate (PAA) as an anionic polyelectrolyte. It is shown that PAA, can be incorporated into the individual inverse microemulsion droplets. The m...
متن کاملFluorinated microemulsions as reaction media for fluorous nanoparticles†
New fluorinated microemulsions (F-MEs) formulated from partially fluorinated solvent–co-solvent mixtures and fluorinated anionic AOT-analogue surfactants are reported. These F-MEs permit incorporation of water into fluorinated solvents, up to a volume fraction fwater z 0.13. Interestingly, phase behavior and structures, determined by small-angle neutron scattering (SANS), parallel many other cl...
متن کاملDesign of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica
Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water (O/W), and water-in-oil (W/O) microemulsions. The influence of the s...
متن کاملPolyelectrolyte-Modified Microemulsions: Formation of Nanoparticles in the Presence of Anionic and Cationic Polyelectrolyte
The paper is focused on the formation of calcium phosphate nanoparticles (CP) in polyelectrolyte-modified microemulsions, in a microemulsion template phase consisting of cyclohexane, water, anionic surfactantant and cosurfactant, in the presence of anionic and cationic polyelectrolyte. It is shown that polyelectrolyte, can be incorporated into the individual inverse microemulsion droplets. The ...
متن کاملPolyelectrolyte-Modified Microemulsions: Formation of Nanoparticles in the Presence of Anionic and Cationic Polyelectrolyte
The paper is focused on the formation of calcium phosphate nanoparticles (CP) in polyelectrolyte-modified microemulsions, in a microemulsion template phase consisting of cyclohexane, water, anionic surfactantant and cosurfactant, in the presence of anionic and cationic polyelectrolyte. It is shown that polyelectrolyte, can be incorporated into the individual inverse microemulsion droplets. The ...
متن کامل